Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Appl Mater Interfaces ; 16(12): 15242-15250, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485216

RESUMO

A coordination complex, Eu(C12C12dbm)3(phen), with strong emission and a high quantum yield (QY ∼ 51.9%) was synthesized. The EuIII complex, as a fluorescent emitter, was embedded in cholesteric liquid crystal polymer networks (CLCNs). A series of free-standing EuIII-CLCN films were obtained, generating a typical sharp emission band corresponding to the EuIII complex. Tunable handedness of circularly polarized luminescence (CPL) with high |glum| values (up to 0.63) was observed. A series of CPL-active CLCN-coated PET films were also prepared (|glum| values up to 0.63), which can be used for large-area preparations. Moreover, by stacking an emitter-embedded PMMA layer and a CLCN layer, a composite system was built, and a large |glum| value (∼1.42) was achieved. Fluorescence patterns were prepared, and distinct images of CLCN films were recognized under both daylight and UV light. This work not only demonstrated that coordination compounds could be incorporated with CLCN films to prepare CPL-active materials with high |glum| values but also provided a new perspective for emissive CLCN materials used for anticounterfeiting and encryption.

2.
Cell Commun Signal ; 22(1): 139, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378659

RESUMO

BACKGROUND: Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS: We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS: The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS: In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/uso terapêutico , Espermidina/farmacologia , Camundongos Endogâmicos C57BL , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos Pentacíclicos/uso terapêutico
3.
Antonie Van Leeuwenhoek ; 117(1): 44, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413433

RESUMO

Two fungal strains (K-2T and S1) were isolated from the deepest ocean sediment of the Challenger Deep located in the Mariana Trench. The internal transcribed spacer (ITS) gene sequences of the isolates K-2T and S1 differed from those of closely related species, such as Talaromyces assiutensis and T. trachyspermus. Phylogenetic analyses based on single and concatenated alignments of the genes, namely ITS, ß-tubulin (benA), calmodulin (cam), and the second-largest subunit fragment of the RNA polymerase II (rpb2) showed that the isolates K-2T and S1 were clustered together with other Talaromyces species, such as T. trachyspermus and T. assiutensis, as evidenced by the position on a terminal branch with high bootstrap support. They could also be distinguished from their closest relatives with valid published names via morphological and physiological characteristics, for example, growth at 4 °C-50 °C with a pH in the range of 1.5-12. Based on their phylogenetic, morphological, and physicochemical properties, the isolates K-2T and S1 represent a novel species in the genus Talaromyces, and the proposed name is Talaromyces sedimenticola sp. nov. The type strain is K-2T (= GDMCC 3.746T = JCM 39451T).


Assuntos
Ácidos Graxos , Talaromyces , Ácidos Graxos/química , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética
4.
BMC Genomics ; 25(1): 94, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262950

RESUMO

The cuttlefish, Sepia pharaonis, is characterized by rapid growth and strong disease resistance, making it an important commercially farmed cephalopod species in the southeastern coastal regions of China. However, in the reproductive process of S. pharaonis, there are challenges such as a low output of eggs, poor quality, and low survival rates of newly hatched juveniles. Therefore, there is an urgent need to study the molecular mechanisms underlying ovarian development in this species. In this study, we conducted the first transcriptomic analysis of the ovary at four developmental stages: the undeveloped stage, developing stage, nearly-ripe stage, and ripe stage, and compared the transcriptomics among these four stages using Illumina sequencing technology. The total numbers of clean reads of the four stages ranged from 40,890,772 to 52,055,714 reads. A total of 136,829 DEGs were obtained, GC base ratios of raw data were between 38.44 and 44.59%, and the number of uniquely mapped reads spanned from 88.08 to 95.90%. The Pearson correlation coefficient demonstrated a strong correlation among different samples within the same group, PCA and Anosim analysis also revealed that the grouping of these four stages was feasible, and each stage could be distinguished from the others. GO enrichment analysis demonstrated that ovarian follicle growth, sex differentiation, and transforming growth factor beta receptor, played a foreshadowing role at the early ovarian development stage, and the terms of small molecule metabolic process, peptide metabolic process, and catalytic activity were prominent at the mature stage. Meanwhile, KEGG analysis showed that the early ovarian development of S. pharaonis was mainly associated with the cell cycle, DNA replication, and carbon metabolism, while the mid-late ovarian development was involved with the signal transduction, endocrine system, and reproduction pathway. RT-qPCR further confirmed the consistent expression patterns of genes such as 17ß-HSD, GH, VGS, NFR, and NYR in the ovaries of S. pharaonis, exhibiting elevated levels of expression during the maturation stage. Conversely, ER and OM exhibited high expression levels during the early stages of ovarian development. These transcriptomic data provide insights into the molecular mechanisms of S. pharaonis ovarian development. The findings of this study will contribute to improving the reproduction and development of cuttlefish and enriching the bioinformatics knowledge of cephalopods.


Assuntos
Sepia , Transcriptoma , Feminino , Animais , Decapodiformes , Ovário , Perfilação da Expressão Gênica
5.
J Ethnopharmacol ; 323: 117653, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163561

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ruyi Zhenbao Pill (RYZBP) is a traditional Tibetan medicine that has been used for over 300 years in China to treat neurological diseases, specifically neuropathic pain (NP). However, its characteristics and mechanism of action in treating NP remains unclear. AIM OF THE STUDY: Based on animal experiments and transcriptomics to evaluate the characteristics and mechanism of RYZBP in treating NP. METHODS: Mice were divided into six groups using random assignment: sham-operation group, spinal nerve ligation (SNL) group, RYZBP low (0.65 g kg-1), medium (1.30 g kg-1), high (2.60 g kg-1) doses groups, and positive drug pregabalin (PGB, 0.05 g kg-1) group. Mice received intragastrical administered for 14 consecutive days. SNL and intrathecal injection models were employed. The analgesic effects were assessed using the Von Frey test, Acetone test, and Hot Plate test. L5 spinal dorsal horns were collected for transcriptomics on day 15. The potential signaling pathways and Hub genes of RYZBP to ameliorate NP were obtained through transcriptomics and network pharmacology. Molecular docking was utilized to evaluate the binding ability of candidate active ingredients with the Hub genes. Finally, western blot (WB) and immunofluorescence (IF) were used to validate the predicted targets. RESULTS: RYZBP demonstrated a dose-dependent alleviation of mechanical allodynia, cold and heat stimulus-induced pain in SNL mice. Transcriptomics analysis identified 24 differentially expressed genes, and pathway enrichment analysis revealed that the CXCL10-CXCR3 signal axis may be the primary biological pathway through which RYZBP relieve NP. Molecular docking test indicated that the active ingredient in RYZBP exhibit a strong affinity for the target protein CXCL10. WB and IF tests showed that RYZBP can significantly inhibit CXCL10 and CXCR3 and its downstream molecules expression in the spinal dorsal horn of SNL mice. Additionally, intrathecal injection of rmCXCL10 worsened pain hypersensitivity, while RYZBP was able to suppress the pain hypersensitivity response induced by rmCXCL10 and reduce the expression levels of CXCL10 and CXCR3 and its downstream molecules. CONCLUSION: RYZBP had a significant analgesic effect on NP model, and this effect may be related to inhibiting the CXCL10-CXCR3 pathway in the spinal dorsal horn.


Assuntos
Medicina Tradicional Tibetana , Neuralgia , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Medula Espinal , Nervos Espinhais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Ligadura
6.
Fish Shellfish Immunol ; 144: 109265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040138

RESUMO

Skin ulceration syndrome (SUS) is becoming a severe problem in the breeding and culturing process of the cuttlefish Sepia pharaonis. However, limited knowledge is available about the occurrence of this devastating disease. In this study, proteomic analysis was used to identify the differentially expressed proteins (DEPs) and the biological pathways enriched in SUS-diseased S. pharaonis. Both the healthy group and diseased group were analyzed in triplicate, with 4 cuttlefish in each replicate. The results showed that 85 DEPs were identified between the two groups, including 36 upregulated proteins and 49 downregulated proteins in the diseased group compared to the healthy group. GO enrichment analysis revealed that the DEPs were mainly enriched in cellular component organization or biogenesis, nucleus and ion binding processes. The results of the KEGG pathway analysis indicated that extracellular matrix (ECM)-receptor interaction was the most enriched upregulated pathway. Real-time reverse transcriptase PCR was used to identify the expression of two differentially expressed matrix metalloproteinases (MMPs), and the results showed that the mRNA expression of MMP14 and MMP19 was significantly upregulated in the skin tissue of the diseased group. Furthermore, the protease activity of the diseased group was higher than that of the healthy group. Our results offer basic knowledge on the changes in protein profiles during the occurrence of SUS in the cuttlefish S. pharaonis.


Assuntos
Sepia , Úlcera Cutânea , Animais , Decapodiformes , Proteômica
7.
Clin Immunol ; 258: 109859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065368

RESUMO

The pathogenic anti-citrullinated protein antibodies (ACPA) are thought to play a vital role in the initiation and immune maintenance of rheumatoid arthritis (RA). However, it is noteworthy that ACPA is not a salient characteristic of any conventional RA animal model. Porphyromonas gingivalis (Pg) is the first microorganism identified to induce citrullination and a target of autoantibodies in early rheumatoid arthritis (RA). Thus, we employed C3H mice with specific MHC types and combined Pg infection with collagen immunity to develop an animal model of ACPA-positive RA. The resulting model exhibited citrullination characteristics, as well as pathological and immune cell changes. 1) Mice showed a significant increase in ACPA levels, and various organs and tissues exhibited elevated levels of citrullinated protein. 2) The mice experienced heightened pain, inflammation, and bone destruction. 3) The spleen and lymph nodes of the mice showed a significant increase in the proportion of Tfh-GCB cell subpopulations responsible for regulating autoantibody production. In conclusion, the C3H mouse model of Pg infection with collagen immunity demonstrated significant alterations in ACPA levels, citrullinated protein expression, and immune cell subpopulations, which could be a crucial factor leading to increased pain, inflammation, and bone destruction.


Assuntos
Artrite Reumatoide , Porphyromonas gingivalis , Animais , Camundongos , Camundongos Endogâmicos C3H , Autoanticorpos , Imunização , Inflamação , Colágeno , Dor
8.
J Hazard Mater ; 463: 132921, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944228

RESUMO

Microplastics have become one of the hot concerns of global marine pollution. In recent years, diversity and abiotic influence factors of plastisphere microbial communities were well documented, but our knowledge of their assembly mechanisms and co-occurrence patterns remains unclear, especially the effects of depth on them. Here, we collected microorganisms on microplastics to investigate how ocean depth affects on microbial diversity, community composition, assembly processes and co-occurrence patterns. Our results indicated that there were similar microbial richness and community compositions but microbial evenness and unique microbes were obviously different in different ocean layers. Our findings also demonstrated that deterministic processes played dominant roles in the assembly of the mesopelagic plastisphere microbial communities, while the bathypelagic microbial community assembly was mainly shaped by stochastic processes. In addition, the co-occurrence networks suggested that the relationships between microorganisms in the mesopelagic layer were more complex and stable than those in the bathypelagic layer. Simultaneously, we also found that Proteobacteria and Actinobacteriota were the most abundant keystones which played important roles in microbial co-occurrence networks at both layers. This study enhanced our understanding of microbial diversity, assembly mechanism, and co-occurrence pattern on plastisphere surfaces, and provided useful insights into microorganisms capable of degrading plastics and microbial remediation.


Assuntos
Microbiota , Plásticos , Microplásticos , Bactérias , Proteobactérias
9.
Nat Commun ; 14(1): 8399, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110425

RESUMO

Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Ascomicetos/metabolismo , Transporte Biológico , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4173-4186, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802786

RESUMO

Neuropathic pain(NP) has similar phenotypes but different sequential neuroinflammatory mechanisms in the pathological process. It is of great significance to inhibit the initiation of neuroinflammation, which has become a new direction of NP treatment and drug development in recent years. Mongolian drug Naru-3 is clinically effective in the treatment of trigeminal neuralgia, sciatica, and other NPs in a short time, but its pharmacodynamic characteristics and mechanism of analgesia are still unclear. In this study, a spinal nerve ligation(SNL) model simulating clinical peripheral nerve injury was established and the efficacy and mechanism of Naru-3 in the treatment of NPs was discussed by means of behavioral detection, side effect evaluation, network analysis, and experimental verification. Pharmacodynamic results showed that Naru-3 increased the basic pain sensitivity threshold(mechanical hyperalgesia and thermal radiation hyperalgesia) in the initiation of SNL in animals and relieved spontaneous pain, however, there was no significant effect on the basic pain sensitivity threshold and motor coordination function of normal animals under physiological and pathological conditions. Meanwhile, the results of primary screening of target tissues showed that Naru-3 inhibited the second phase of injury-induced nociceptive response of formalin test in mice and reduced the expression of inflammatory factors in the spinal cord. Network analysis discovered that Naru-3 had synergy in the treatment of NP, and its mechanism was associated with core targets such as matrix metalloproteinase-9(MMP9) and interleukin-1ß(IL-1ß). The experiment further took the dorsal root ganglion(DRG) and the stage of patho-logical spinal cord as the research objects, focusing on the core targets of inducing microglial neuroinflammation. By means of Western blot, immunofluorescence, agonists, antagonists, behavior, etc., the mechanism of Naru-3 in exerting NP analgesia may be related to the negative regulation of the MMP9/IL-1ß signaling pathway-mediated microglia p38/IL-1ß inflammatory loop in the activation phase. The relevant research enriches the biological connotation of Naru-3 in the treatment of NP and provides references for clinical rational drug use.


Assuntos
Metaloproteinase 9 da Matriz , Neuralgia , Ratos , Camundongos , Animais , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Medula Espinal/metabolismo , Transdução de Sinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
11.
J Agric Food Chem ; 71(37): 13857-13868, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37688786

RESUMO

Colanic acid (CA) is a natural polysaccharide macromolecule with rich and unique biological properties and is a promising candidate for use in food and cosmetics. To date, the efficient biosynthesis of CA and the influence of product accumulation on the strains used have yet to be precisely investigated. Herein, bottlenecks in the CA metabolic pathway were untangled by finely regulating the expression of manA, cpsG, fcl, and rcsA. Engineered strains produced CA at >1 g/L in shake flasks without dependence on cold temperatures, and it was verified in a 1 L bioreactor with a titer up to 18.64 g/L within 24 h. The accumulation of CA caused a decrease in the saturated fatty acid content (represented by C16:0 and C18:0) in the cell membrane. This study demonstrated pathway engineering for efficient CA production in cell factories and provided insights into the barriers and solutions faced in the biosynthesis of natural products.


Assuntos
Produtos Biológicos , Escherichia coli , Escherichia coli/genética , Reatores Biológicos , Polissacarídeos
12.
J Clin Oncol ; 41(31): 4881-4892, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531592

RESUMO

PURPOSE: Homoharringtonine (HHT) is commonly used for the treatment of Chinese adult AML, and all-trans retinoic acid (ATRA) has been verified in acute promyelocytic leukemia (APL). However, the efficacy and safety of HHT-based induction therapy have not been confirmed for childhood AML, and ATRA-based treatment has not been evaluated among patients with non-APL AML. PATIENTS AND METHODS: This open-label, multicenter, randomized Chinese Children's Leukemia Group-AML 2015 study was performed across 35 centers in China. Patients with newly diagnosed childhood AML were first randomly assigned to receive an HHT-based (H arm) or etoposide-based (E arm) induction regimen and then randomly allocated to receive cytarabine-based (AC arm) or ATRA-based (AT arm) maintenance therapy. The primary end points were the complete remission (CR) rate after induction therapy, and the secondary end points were the overall survival (OS) and event-free survival (EFS) at 3 years. RESULTS: We enrolled 1,258 patients, of whom 1,253 were included in the intent-to-treat analysis. The overall CR rate was significantly higher in the H arm than in the E arm (79.9% v 73.9%, P = .014). According to the intention-to-treat analysis, the 3-year OS was 69.2% (95% CI, 65.1 to 72.9) in the H arm and 62.8% (95% CI, 58.7 to 66.6) in the E arm (P = .025); the 3-year EFS was 61.1% (95% CI, 56.8 to 65.0) in the H arm and 53.4% (95% CI, 49.2 to 57.3) in the E arm (P = .022). Among the per-protocol population, who received maintenance therapy, the 3-year EFS did not differ significantly across the four arms (H + AT arm: 70.7%, 95% CI, 61.1 to 78.3; H + AC arm: 74.8%, 95% CI, 67.0 to 81.0, P = .933; E + AC arm: 72.9%, 95% CI, 65.1 to 79.2, P = .789; E + AT arm: 66.2%, 95% CI, 56.8 to 74.0, P = .336). CONCLUSION: HHT is an alternative combination regimen for childhood AML. The effects of ATRA-based maintenance are comparable with those of cytarabine-based maintenance therapy.


Assuntos
População do Leste Asiático , Leucemia Promielocítica Aguda , Criança , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina , Mepesuccinato de Omacetaxina/uso terapêutico , Leucemia Promielocítica Aguda/diagnóstico , Estudos Multicêntricos como Assunto , Indução de Remissão , Taxa de Sobrevida , Resultado do Tratamento , Tretinoína/efeitos adversos
13.
Biochem J ; 480(9): 701-713, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129855

RESUMO

Exosomes are vital mediators for intercellular communications in the tumor microenvironment to accelerate colon cancer progression. Leucine-rich repeat-containing 8A (LRRC8A), the core component of the volume-regulated anion channel, is closely associated with acquiring heterogeneity for tumor cells. However, the role of LRRC8A in the exosomes remains largely unknown. Here, we reported that LRRC8A was one of the compositions in the exosomes released from colon cancer HCT116 cells. Down-regulation of LRRC8A proteins inhibited ex vivo cell growth and induced apoptosis. Consistently, chloride channel blockers DCPIB and NPPB inhibited cell growth and induced cell apoptosis in a time or concentration-dependent manner. Interestingly, the total amounts and proportions of different diameter exosomes released in 6 h were not altered by the treatment of DCPIB and NPPB in HCT116 cells. In contrast with the inhibition of LRRC8A, overexpression of LRRC8A proteins in HCT116 cells released significantly more distinct populations of exosomes. Importantly, the switches of ratios for exosomes in a hypotonic challenge were eliminated by DCPIB treatment. Collectively, our results uncovered that LRRC8A proteins were responsible for the exosome generation and sorted into exosomes for monitoring the volume regulation.


Assuntos
Neoplasias do Colo , Exossomos , Humanos , Proteínas de Membrana/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Proteínas de Repetições Ricas em Leucina , Microambiente Tumoral
14.
Cell Stem Cell ; 30(4): 378-395.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028404

RESUMO

Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Animais , Camundongos , Medula Óssea/metabolismo , Rejuvenescimento , Células-Tronco Hematopoéticas/metabolismo , Técnicas de Cocultura , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco
15.
Sci Total Environ ; 855: 158915, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36152862

RESUMO

Nitrogen (N) is an essential nutrient element for life, and also a major element involved in the composition of greenhouse gases, surface water pollutants, air pollutants, etc. Quantifying and evaluating the nitrogen budget of a region is very important for effectively controlling the nitrogen discharge and scientifically managing the nitrogen cycle. In this paper, the urban Rural Complex N Cycling (URCNC) model was used to analyze the nitrogen budget of Mwanza region, a typical lakeside area with insufficient data, and the nitrogen flow process of livestock subsystem, cropland subsystem, human subsystem and landfill subsystem was clearly described and the nitrogen input sources of atmospheric subsystem and surface water subsystem were clarified. And the results demonstrated: (1) the cropland subsystem was the subsystem with the largest nitrogen flux, and the input, output and accumulation of nitrogen were 33,116 t of N, 31,925 t of N and 1191 t of N, respectively. Livestock subsystem was the second largest subsystem of nitrogen flux, and the input, output and accumulation of nitrogen were 31,013 t, 30,183 t and 830 t, respectively. The nitrogen flux of the human subsystem was also large, and the nitrogen input, output and accumulation were 17,905, 17,125 and 780 t, respectively. The nitrogen input, output and accumulation of the landfill subsystem were 3700 t, 770 t and 2930 t, respectively. (2) 8093 t of N, 6864 t of N, 3959 t of N, and 758 t of N emitted into the atmospheric subsystem from the livestock subsystem, cropland subsystem, human subsystem, and landfill subsystem, respectively. (3) The total Nr input of surface water subsystem increased from 18,545 t of N in 2010 to 20,174 t of N in 2020, with an increase of 8.78 % in the past decade. It was estimated that by 2030, the total Nr input of the surface water subsystem would reach 24,946 t of N with an increase of 23.65 % compared with 2020. The livestock subsystem was the largest source, the cropland subsystem was the second largest source and human subsystem was an important source. (4) Population growth, economic development and urbanization are the main nitrogen driving factor. (5) Technology and policy together have important contributions to the reduction of nitrogen pollution in surface water.


Assuntos
Poluentes Atmosféricos , Nitrogênio , Humanos , Animais , Nitrogênio/análise , Tanzânia , Poluentes Atmosféricos/análise , Urbanização , Gado , Água , China , Monitoramento Ambiental
16.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6457-6474, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212003

RESUMO

The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.


Assuntos
Dor Crônica , Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Dor Crônica/complicações , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Ligantes , Transdução de Sinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo
17.
Front Pharmacol ; 13: 895738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034875

RESUMO

Melanoma is a commonly malignant cutaneous tumor in China. Astragalus propinquus Schischkin and Pinellia pedatisecta Schott (A&P) have been clinically used as adjunctive drugs in the treatment of malignant melanoma. However, the effect and mechanism of A&P on melanoma have yet to be explored. The current investigation seeks to characterize the active components of A&P and their potential roles in treating malignant melanoma using network pharmacology and in vitro and in vivo experiments. We first used the traditional Chinese medicine systems pharmacology (TCMSP) database and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) to identify a total of 13 effective compounds within A&P. 70 common genes were obtained by matching 487 potential genes of A&P with 464 melanoma-related genes, and then we built up protein-protein interaction (PPI) network of these 70 genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results revealed that A&P might influence the pathobiology of melanoma through the PI3K/Akt pathway. Molecular docking also confirmed that higher content of ingredients in A&P, including hederagenin, quercetin, beta-sitosterol and stigmasterol, had a strong binding activity (affinity < -5 kcal/mol) with the core targets AKT1, MAPK3 and ESR1. Furthermore, we confirmed A&P could inhibit melanoma cells proliferation and induce cells apoptosis through suppressing the PI3K/Akt signaling pathway by in vitro and in vivo xenograft model experiments. These findings indicate that A&P may function as a useful therapy for melanoma through the PI3K/Akt pathway.

18.
Toxicol Sci ; 189(2): 287-300, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35913497

RESUMO

Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM-exposed mice and AS mice models, including high-fat diet-fed mice and apolipoprotein E-deficient mice. The in vitro model further defined the dose-dependent response of PM treatment on foam cell formation. Interestingly, airborne magnetite NPs rather than nonmagnetic NPs at the same concentration were demonstrated to be the key toxic component of PM in the promoted foam cell formation. Furthermore, magnetite NPs exposure led to abnormal cholesterol accumulation in macrophages, which was attributed to the attenuation of cholesterol efflux and enhancement of lipoprotein uptake, but independent of cholesterol esterification. The in-depth data revealed that magnetite NPs accelerated the protein ubiquitination and subsequent degradation of SR-B1, a crucial transporter of cholesterol efflux. Collectively, these findings for the first time identified magnetite NPs as one key toxic component of PM-promoted foam cell formation, and provided new insight of abnormal cholesterol metabolism into the pathogenesis of PM-induced AS.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Colesterol/metabolismo , Óxido Ferroso-Férrico/metabolismo , Células Espumosas/patologia , Homeostase , Humanos , Lipoproteínas LDL/metabolismo , Nanopartículas de Magnetita/toxicidade , Camundongos , Material Particulado/metabolismo , Material Particulado/toxicidade
19.
J Breath Res ; 16(4)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35772384

RESUMO

Whether tobacco smoking affects the occurrence and development of coronavirus disease 2019 (COVID-19) is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e. smoking status, COVID-19 status, and basic information of population) from human serum proteomic and metabolomic levels were established by literature search. Bioinformatics analysis was then performed to analyze the interactions of proteins or metabolites among the above three databases and their biological effects. Potential confounding factors (age, body mass index (BMI), and gender) were controlled to improve the reliability. The obtained data indicated that smoking may increase the relative risk of conversion from non-severe to severe COVID-19 patients by inducing the dysfunctional immune response. Seven interacting proteins (C8A, LBP, FCN2, CRP, SAA1, SAA2, and VTN) were found to promote the deterioration of COVID-19 by stimulating the complement pathway and macrophage phagocytosis as well as inhibiting the associated negative regulatory pathways, which can be biomarkers to reflect and predict adverse outcomes in smoking COVID-19 patients. Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. Our study provides novel evidence and corresponding biomarkers as potential predictors of severe disease progression in smoking COVID-19 patients, which is of great significance for preventing further deterioration in these patients.


Assuntos
COVID-19 , Proteômica , Biomarcadores/metabolismo , Testes Respiratórios , Humanos , Metabolômica , Reprodutibilidade dos Testes , Fumar/efeitos adversos , Fumar Tabaco
20.
Bioelectrochemistry ; 145: 108048, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35093618

RESUMO

Biocides are often used to mitigate the microbially influenced corrosion (MIC) of construction materials in many fields. To study the effect of inadequate dosing of non-oxidizing biocide tetrakis (hydroxymethyl) phosphonium sulfate (THPS) on corrosion of pipeline steel caused by microorganisms, a novel marine isolate Desulfovibrio hontreensis SY-21 was selected as a test microorganism. Weight loss rate determination, morphological analyses, and corrosion product analyses combined with electrochemical measurements were performed to investigate the influence of THPS on the MIC of X70 pipeline steel. The responses of sessile and planktonic cells of D. hontreensis to THPS were also studied. Results showed that D. hontreensis cells could significantly promote steel corrosion and induce local corrosion pits. With a THPS addition within the tolerance range of D. hontreensis for the biocide, MIC of the steel was further promoted by 65%. The growth of planktonic cells was inhibited by the biocide, but the number of biofilm cells was significantly increased. This study revealed that THPS concentrations within a specific range increased the corrosive effect of the presence of D. hontreensis by promoting the growth of sessile cells and biofilm formation. Therefore, the use of the biocide in practical applications needs to be properly considered and managed.


Assuntos
Desulfovibrio , Desinfetantes , Biofilmes , Corrosão , Desinfetantes/farmacologia , Flavonoides , Aço/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...